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New Aspects of the Method of Lines
Achim Dreher, Member,

Abstract—A re-examination of the fundamentals of the Method
of Lines (MoL) shows its close relation to the mode-matching
technique, on which it is merely a variant with further approx-
imations. It is obvious that the discretization of the differential
operators should be avoided, because it has no advantage, and in
fact only leads, to additional errors. This effect is demonstrated
for a partially filled waveguide.

I. INTRODUCTION

THE method of lines (MoL) can be considered a well-
established numerical procedure for the analysis of a

variety of microwave and optical waveguide structures as
well as plane wave scattering problems [1]–[5]. Its basic
principle is the discretization of the wave equation in one or
two dimensions and the analytical treatment in the remaining
direction. In this letter, a comparison to the mode-matching
technique is made, and it will be shown that both procedures
use the same basis functions for the representation of the
field quantities but different eigenvalues in the characteristic

equation, which are not exact in the MoL because of the
approximation of the operators. These fundamental features,
which are not yet known to the practitioners, are demonstrated
for a boundary value problem in Cartesian coordinates with
discretization in one direction. The generalization to higher
dimensions and other coordinate systems is straightforward.

II. THEORY AND NUMERICAL RESULTS

A typical boundary value problem occurring in the analysis
of planar optical or microwave structures is depicted in Fig. 1.
A structure that may be stratified in the y-direction with
arbitrarily shaped metallizations in the interfaces is enclosed
by lateral electric walls. For simplification. all coordinates and
propagation constants are normalized with the free space wave
number kO,

Assuming a wave propagation exp (– jk,z) the correspond-

ing wave equation to be solved is

(D: +q +Q)’#e. h = o (1)

with
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Fig, 1, Illustration of a typical boundary value problem occurring in planar
optlcd or microwave analysls with dwcretlzatlon.

Herein, +,, h stands for the independent field components Ez

or Hz. respectively. In the MoL the operator D; is replaced
by its discretized form, the matrix P, and also including the

approximated boundary conditions, which in this case are of
the Dirichlet type for E. and of the Neumann type for Hz.
The vector V is transformed

to obtain a system of uncoupled ordinary differential equations

with

k; = A2– EdI (6)

To perform this diagonalization the related eigenvalue problem

(P- A’q. t=o (7)

has to be solved to obtain the elements of A2 and the
column vectors of the transformation matrix T. With Dirichlet
conditions on both sides and equidistant discretization, the
elements of the eigenvalue and transformation matrix are

,X, ==# sin
t7r

2(N + 1)
(8)

T,l = sin L
N+l

2,.j=l,2, . . ..N. (9)

Normalization factors have been omitted.
To compare with the mode-matching technique we use the

modal expansions of the field in x-direction given by the
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Fourier series
cc

ti(~, Y) = ~ &(Y) sin kz,s kzi = ~ (lo)
C=l

suitable for the corresponding boundary conditions for Ez. A
similar representation can be derived for Hz. From (1) follows
an equivalent set of ordinary differential equations

(D: - k;i)~t = o (11)

with

k~t = k~i _ Ed. (12)

To set up a system equation that can then be solved numer-
ically, a point-matching procedure [6] is applied to (10) at
the equidistant points Xj = h , j, j = 1,2, . . . . N, and
the Fourier series is cut at i = N according to the sampling
theorem. In the following, this procedure will be called a

discrete mode matching (DMM).
Under these conditions, the field components are

~-i ‘+(Zj, Y)

(13)

which is exactly the transformation following from (3) and
(9) in the MoL. Now it is clear that the MoL uses a field
representation with eigenmodes as full-domain basis functions,

of which the number is equal to the number of discretization
lines. Notice, however, that the eigenvalues in the characteris-

tic equation (6) differ from those in the modal expansions (10).
This fact has its reason in the approximation of the differential

operator. With an increasing number of lines and thus h -+ O

we find from (9) using h = (a/N + 1)

$~mw Ai = ~

= <i (14)

if the sine-function is replaced by its argument for large
IV. In other words, the eigenvalues in the MoL are inexact
and converge to the exact value, if the approximation of the
operator is improved. This can also be seen from the recurrence
relation

A:+l = A2A:[2(I – Cos A~)]-1 (15)

presented in [7]. To compute the limit Ag of the series, we
make use of Cauchy’s convergence theorem for each element
i

lim 1~,,~+1 – ~z)~l = ~:mm Ihk – k91
k-cc

=0 (16)

and with A,, ~+1 = & ~ = At, g we, of course, find, from (9)
and (15) the same limit

AZ,~ = ‘r
h(~+l)
‘i7r—_ (17)
a“
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Fig. 2. Convergence of the eigenvatue series ~,, ~ according to [7] with
Z= N+l, A,, g=rr.

Note the difference in the definition of Ai in (9) and (15)
by multiplication with h. The convergence behavior of (15)
depends on i and is very slow for the worst case i = N + 1
(Fig. 2).

For a further discussion of the precision that can be achieved
with the MoL, we will investigate how the propagation con-
stants of the modes of a waveguide filled with a stratified
dielectric are obtained from the system equation. By means of
an additional transformation, the waves are decomposed into
modes TM and TE to y [8]. In the system equation

F.E=O (18)

the discretized and transformed tangential field components E
in an arbitrmy matching interface are thus multiplied with

diagonal matrix ~. The solutions of (18) are obtained from

N+l 2N+1

a

=0 (19)

or

with

~=1, . . ..2N+l

,.= * ‘MM
{“ m= ‘0’

(21)

and j according to the indices in (19) for TEy or TMg,
respectively. Each equation i of (20) has an infinite number n
of solutions corresponding to the propagation constants of the

TEy;n and TMyjn modes. With the correct wave number )L. j,
these are the characteristic equations from which kZ can also be
obtained analytically. In the MoL the solutions depend on the
discretization density and are exact only if N ~ cc according

to (14). Since l&+l – km~+l I > l& – kzjl, they become more
inaccurate for higher order modes, as can be seen from the
convergence curves in Fig. 3. For a fair comparison, the same
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Fig. 3, Convergence of thenormalized propagation constants of the funda-
mental and higher-order modes of a partially filled waveguide to their exact
analytical values, a/Ao = 2, b/a= O.4, d/b= O.2, c,=2.55, MoL:
Method of lines, DMM: Discrete mode matching. The data labels indicate the
number of Ez-lines.

algorithm for the numerical computation has been used for
both methods. Only A7 andkZj have been interchanged.

III. CONCLUSION

The relation between the method of lines (MoL) and the

mode-matching technique has been clarified, It has been found

that both methods use the same modal representation of the

field components, but in the MoL the differential operators are
approximated, which results in an additional error increasing
drastically for higher-order modes. In the mode-matching
procedure or its discretized form (DMM) presented in this
letter, the exact operators, boundary conditions, and spectral
wave numbers are used. Since the eigenvalues used in the
MoL converge to these exact quantities if the number of lines
increases or the approximation of the operator is improved, the
DMM always provides the more accurate results with the same

analytical and computational effort. These recognitions are in
a clear contradiction to what was claimed in [9]. Moreover, in
the MoL the eigenvalues depend on the discretization scheme

and have to be calculated numerically for a nonequidistant
discretization [1]. From this point of view the diagonalization
of the system of coupled ordinary differential equations by
means of an appropriate equivalent transformation in the MoL,

which seems to be a surprising property at first glance, turns
out to be nothing but this well-known mathematical fact: the
solution of the Hehnholtz equation for separable boundary
conditions will always separate.

If the eigensolutions are known analytically or can be
obtained by means of a fast converging procedure, which is
the usual case for most coordinate systems, the application of
the MoL is not to be recommended because it only provides an
additional error due to the unnecessary approximation of the
operators. Avoiding the initial discretization and transforma-
tion process and using the exact wave numbers as eigenvalues
from the beginning is, of course, the better choice,
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